Немного о лотереях

В числовых лотереях отдельно взятая простая комбинация равновероятна, и является «единой неделимой сущностью». Другими словами в пространстве полного массива все элементы (мысленно представим — «кубики»), имеют одинаковый размер, следовательно, нет приоритетных отдельных комбинаций. Невозможно выделить в полном массиве «универсальные комбинации», которые будут «всегда» играть лучше остальных, так как лототрон или тиражный генератор равновероятен! Больше всего поражает, что этого не понимают даже многие опытные игроки.

Посмотрим, что такое отдельно взятая комбинация на примере лотереи 5 из 36. Всего таких комбинаций в этой лотерее 376 992 штук. Каждая комбинация имеет свой порядковый номер в полном массиве (индекс — ячейку).

Первая комбинация (000001) =  01-02-03-04-05 …
Последняя комбинация (376992)  =  32-33-34-35-36 = 376992 штук

000001 _ 01-02-03-04-05
000002 _ 01-02-03-04-06
000003 _ 01-02-03-04-07
000004 _ 01-02-03-04-08
…….
…….
…….
002024 _ 01-02-07-11-30
002025 _ 01-02-07-11-31
002026 _ 01-02-07-11-32
…….
…….
174078 _ 04-21-25-32-34
174079 _ 04-21-25-32-35
…….
376992 _ 32-33-34-35-36

Абсолютно любая комбинация в полном массиве ничем не отличается от других в плане вероятности совпадения.
Чтобы это лучше понять, нужно представить 376 992 отдельных лотерейных шаров, на которых  обозначили все 376 992 комбинации.
Такое количество трудно представить и тем более уместить в картинку, покажу только несколько шаров из 376992 штук.

Проведём мысленный эксперимент —  поместим эти шары в огромный лототрон, который выкидывает на каждый тираж только один шар с комбинацией, обозначенной на этом шаре. Не следует забывать, что после каждого прошедшего тиража выпавший шар с обозначенной на нём комбинацией, кидается обратно в этот же лототрон. Таким образом, на следующий тираж все комбинации будут опять на месте, и при запуске лототрона перемешиваться наравне со всеми.

Если трудно представить вариант с шарами, то попробуем представить огромное колесо рулетки, где каждая ячейка для шарика обозначает комбинацию. Таких ячеек 376 992 штук, так как такое разлинованное колесо тоже не получится уместить в картинку, то для общего понимания нарисуем только мизерную часть с комбинациями – выделил начальную и конечную.

Присмотритесь к рисунку — «колесо» разделено на равные ячейки (равновероятные комбинации), а шарик (тиражный генератор) может попасть в любую лунку (ячейку — индекс), не важно, как мы обозначили эти ячейки (хоть картинками). После тиража (спина) колесо не уменьшается — все ячейки остаются на месте.

  • Примечание: ещё раз обращаю внимание — пишу про целую простую одиночную комбинацию. Для каждой отдельной комбинации (ячейки)  полностью теряется смысл, в каких либо чётных, нечётных, суммах, интервалах между числами, повторах, последовательных чисел, и другого –  так как комбинация единое целое и обозначает ячейку (индекс) в полном массиве, и их огромное количество.

читать дальше…>>>